
SIGNAL PROCESSING AND
COMPUTING

PYTHON 101
APRIL 29th, 2016

Youri Poulin, Renato Borges, Florian Fauchier,
Yannick Roehlly, Alain Schmitt, Christian Surace

PYTHON

IMPORT
Populates main namespace (Please, don't):

from os import *
path.join("/folder/", "file")

from os.path import *
join("/folder/", "file")

from os.path import join
join("/folder/", "file")

from os import path
path.join("/folder/", "file")

Dedicated namespace:

import os
os.path.join("/folder/", "file")

import os.path
os.path.join("/folder/", "file")

IMPORT
Dedicated customized namespace (recommended):

import os.path as osp
osp.join("/folder/", "file")

from os import path as p
p.join("/folder/", "file")

import numpy as np
np.array([1, 2, 3])

TYPES

MAIN TYPES
Numerical:

int : 42
�oat : 42.

Iterables::
str : "The answer is 42" tuple : ("The answer",
"is", 42)
list : ["The answer", "is", 42, ["a list"]]
dic : {"The Question" : "the ultimate one",
"The answer:" : 42}

Logical:
bool: True

LISTS
Create a list:

>>> x = [4, 12, 3.2, 45, 11]
>>> print(x)
[4, 12, 3.2, 45, 11]

Index positions:

LISTS
>>> print(x)
[4, 12, 3.2, 45, 11]

Access with index:

>>> x[0]
4

>>> x[1:]
[12, 3.2, 45, 11]
>>> x[1:3]
[12, 3.2]
>>> x[-2:]
[45, 11]

TUPLES
Create a tuple:

>>> x = (4, 12, 3.2, 45, 11)
>>> x = 4, 12, 3.2, 45, 11 # equivalent
>>> print(x)
(4, 12, 3.2, 45, 11)

Assign a tuple to multiples variables:

>>> a, b, c = (4, 12, "something")
>>> print("a = {}; b = {}; c = {}".format(a, b, c))
a = 4; b = 12; c = something

NUMPY

NUMPY ARRAYS
Array from list (or tuple):

>>> ar1 = np.array([1.23, 4.67, 5.8, 7.2])
>>> print(ar1)
[1.23 4.67 5.8 7.2]

Operation on arrays:

>>> ar2 = np.array([1, 2, 0, 10])
>>> ar1*ar2
array([1.23, 9.34, 0. , 72.])
>>> ar1*10
array([12.3, 46.7, 58. , 72.])

NUMPY
Arrays comparison :

>>> ar1 < ar2
array([False, False, False, True], dtype=bool)

Where function :

>>> np.where(ar1>ar2)
(array([0, 1, 2]),)

Cast an array:

>>> ar2
array([1, 2, 0, 10])
>>> ar2.astype(float)
array([1., 2., 0., 10.])

NUMPY
⚠ Slicing a numpy arrays returns a view.
⇒ Modifying this view will modify the original array! :

>>> print(ar1)
[1.23 4.67 5.8 7.2]
>>> v = ar1[1:]
>>> v[0] = 999
>>> print(ar1)
[1.23 999. 5.8 7.2]

TYPING
Dynamic typing:

>>> x = 145.
>>> type(x)
<class 'float'>
>>> i = 2
>>> type(i)
<class 'int'>

>>> s = "23.2"
>>> type(s)
<class 'str'>
>>> s = float(s)
>>> print(s)
23.2
>>> type(s)
<class 'float'>

SYNTAX
No {, no ;
Instructions are separated by end of lines
Structures are delimited by indentation

STRUCTURES

Output:

FOR LOOP
Iteration on an iterable:

myList = [2, 5, 3, 7]
for element in myList:
 print(element)

myList = [2, 5, 3, 7]
for i in range(len(myList)):
 print(myList[i])

2
5
3
7

TEST
Booleans

>>> myBoolean = 1==1
>>> print(myBoolean)
True
>>> not myBoolean
False
>>> myBoolean = 1!=1
>>> print(myBoolean)
False

If:

if myBoolean:
 print("Something")

if (a == b) and ((a != c) or (e < f):
 print("Something")

Output:

WHILE
k = 0
while k <= 3:
 print(k)
 k+=1

0
1
2
3

FUNCTIONS
De�ne a function:

>>> def f(x, a = 0.2):
... res = x**2 + 4.5*x + a
... return res
>>> y = f(3)
>>> print(y)
22.7
>>> y2 = f(3, a = 0.4)
>>> print(y2)
22.9

FUNCTIONS
Routines are functions:

def myRoutine():
 t = 12
 global u
 u = u*100
t = 1
u = 2
myRoutine()

>>> print(t)
1
>>> print(u)
200

FORMAT STRINGS
>>> s = "The {} is {}.".format("answer", 42)
>>> print(s)
The answer is 42.

>>> print("a = {1}, b = {2}, c = {0}".format(2, 0, 1))
a = 0, b = 1, c = 2

>>> t = [1.1, 2.2, 3.3]
>>> "First : {0[0]}, second : {0[1]}, third : {0[2]}".format(t)
'First : 1.1, second : 2.2, third : 3.3'

Basic way:

More secured way:

READ A FILE

fname = open('example.txt', 'r')
< operations on fname >
fname.close()

with open("example.txt", "r") as fname:
 out = fname.read() # string containing the entire fname
 line = fname.readline() # One line, goes to the next line
 # at each use
 out = fname.readlines() # list (one line for one line in the file)

Numerical data �les

READ A FILE

>>> ar = np.loadtxt('example.dat', dtype=<type 'float'>,
 comments='#', delimiter=None)
>>> print(ar)
array([[1.034 2.2 23.34]
 [33.2 44.1 43.88]
 [13.5 673. 14.42]
 [33.0 67.92 1.88]
 [83.2 45. 8.]
 [55.9 3. 9.72]]

WRITE A FILE
Classical secured way:

with open("exampel.txt", 'w') as fname:
 fname.write("This is the file content\nbye")

Numerical data �les:

arr = np.array([[1.1, 2.2, 3.3], [2.1, 2.2, 2.3]])
np.savetxt("output.dat", arr, fmt='%.18e', delimiter=' ', newline='\n', header=

WRITE YOUR
PROGRAM/MODULE

#!/usr/bin/env python3

import numpy as np

''' ________________ Functions _________________'''

def datafile_function(input_fname, output_fname, verbose = False):
 input_arr = np.loadtxt(input_fname)
 if verbose:
 print("Input array has been loaded.")
 output_arr = operation_on_array(input_arr)
 np.savetxt(output_fname, output_arr)
 if verbose:
 print("Output array has been written.")

def operation_on_array(input_array):
 return input_array*10 + 2

SUBPROCESS AND
MODULES

Get stdin and stoud from system command:

import subprocess as sub
(output, error)=sub.Popen("ls", stdout=sub.PIPE,
 shell=True).communicate()

System commands and path manipulation:

import os
>>>os.getcwd()
'/home/username
>>>os.path.abspath("folder")
'/home/username/folder'
>>>path = os.path.join("/home/username", "folder2")
>>>path
'/home/username/folder2'
>>>os.chdir(PATH)
>>>os.getcwd()
'/home/username/folder2'

'/home/username/folder2'

DOCUMENTATION
https://docs.python.org/3/ text
https://docs.python.org/3/ text

https://docs.python.org/3/
http://docs.scipy.org/doc/

INSTALLING
PYTHON

AIM
Have Python installed on your computer and

understand how this installation works, how to install
new packages, how to make updates, etc.

OUTLINE
Install Python with Anaconda
The conda utility
The pip utility
Quick overview of environments
The interactive Python
The notebook

INSTALLING PYTHON WITH

ANACONDA
Anaconda is a Python distribution by Continuum
analytics.
Works on GNU/Linux, OSX™©, and Windows™©.
Contains a lot of scienti�c packages (in particular
astropy).
Installs Python in a user owned directory
without interfering with the system Python.

https://www.continuum.io/downloads

https://www.continuum.io/downloads

INSTALLATION
Download the Anaconda installer (take the Python 3
version) and execute it. In doubt, use default choices.

https://www.continuum.io/downloads

https://www.continuum.io/downloads

The installer has created an anaconda directory
in your home folder…

… containing all the distribution, in particular a bin folder.

The installer has also modi�ed the pro�le �le to add
this bin directory in the PATH, before your system
default path.

added by Anaconda3 4.0.0 installer
export PATH="/Users/yannick/anaconda/bin:$PATH"

Doing this, calling python will use the Python installed
by anaconda and not the system one.
Uninstalling anaconda is just a mater of removing the
anaconda directory (and removing the PATH export
from the pro�le).

A navigator application is also available to
launch some application…

… or to install Python packages. But we will see how to
do this with the conda programme.

THE CONDA UTILITY
conda is a Python* package manager.

Search for packages
$ conda search PACKAGE

Install a package
$ conda install PACKAGE

Uninstalling a package
$ conda remove PACKAGE

List installed package
$ conda list

* Not only for Python packages in fact…

UPDATES
Updating the conda programme (to do once in a while)
$ conda update conda

Updating the anaconda distribution
$ conda update anaconda

Updating a specific package
$ conda update PACKAGE

Note that anaconda is also a package depending on all the standard packages of the
distribution, that's why when you “update anaconda” you update the distribution. When you
update a speci�c package, you switch the Anaconda installation to a custom version.
Subsequently updating the distribution may then downgrade the package.

Keep it simple and only update the distribution.

THE PIP UTILITY
pip is the standard tool to install packages from PyPI, the
Python Package Index ().pypi.python.org

Search PyPI for packages
$ pip search SOMETHING

Install a package from PyPI
$ pip install PACKAGE

Updating a package
$ pip install PACKAGE --upgrade

Use pip to install packages that are not available with conda.

Always prefer conda to install a package.

https://pypi.python.org/

ENVIRONMENTS
Anaconda creates a root environment. Separate environments may be created to
install a speci�c set of packages, even with a di�erent Python version.

Creating a new environment to use Python 2.7
$ conda create -n my_py2 python=2.7

Switching to this environment (look at the new prompt)
$ source activate my_py2
discarding /Users/yannick/anaconda/bin from PATH
prepending /Users/yannick/anaconda/envs/my_py2/bin to PATH
(my_py2)$ _

From here, all available package, all installations
are made in the new environment.

To return to the root environment
(my_py2)$ source deactivate
discarding /Users/yannick/anaconda/envs/my_py2/bin from PATH

When you launch a console, you are always in the root environment and have to
manually activate the speci�c environment.

INTERACTIVE PYTHON
If you launch python in the console, you can write Python code that is
evaluated line per line (it is a REPL - read, eval, print, loop). But it's not
very user friendly.

IPython was developed to have an interactive Python shell with:

Code completion (with Tab).
Access to useful shell commands like cd or ls.
Good command history.
A lot more.

Code is organised in cells (which can by multi-line).

Tab was pressed

This is a cell

Objects persist
between cells.

IPython is very handy to perform operations that don't need to be
stored in a script.

IPYTHON NOTEBOOK
The notebook was developed to give to IPython an interface similar to
Mathematica notebook.

IPython is accessed via a web page where one can:

Write and evaluate Python code.
Display the results of the code, in particular matplotlib
graphics.
Write some textual content, like a lab notebook.

For instance, the LIGO experiment made a tutorial on the
processing of their data:

https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html

https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html

IPYTHON / JUPYTER
IPython has evolved and can now run code in other languages (e.g.
GNU-R). Hence, it was renamed to Jupyter.

NOTEBOOK - LAUNCHING IT
IPython notebook saves the notebooks on disk. We will create a folder
where the notebook will be saved on launch the notebook inside.

$ mkdir tutorial_notebooks
$ cd tutorial_notebooks
$ jupyter notebook

This will spawn a browser showing:

We can create a new notebook doing New → Notebook Python 3. A
new browser tab is opened with:

We can rename the notebook with a click on Untitled. If we go back to
the main tab we can see that the notebook was renamed and that the
�le in the directory is the notebook name followed by .ipnb.

The notebook is organised into cells (like the IPython console). Each cell
can contain Python code (with code completion with tab)

or text formatted with Markdown.

It's easy to display Python help. You just have to execute a cell with the
object you want help on followed by a quotation mark (attached).

IN-LINE GRAPHICS
You can plot matplotlib �gures inside the web page using
%matplotlib inline at the beginning of the notebook.

Alternatively, you can use %matplotlib notebook to have interactive
�gures (zoom, pan, etc.)

NOTEBOOK CODE EXECUTION
Each code cell must be executed (Alt+Return or the play
button).
There is kernel managing a session. Each executed cell
modify the kernel environment.
It's not the order of the cells in the page that de�ne the
programme but the order in which the cells are
executed.
There is a shortcut Cell → Run all cells.
The kernel may be restarted.

TUTORIAL &
EXERCISES

