SIGNAL PROCESSING AND
COMPUTING

PY THON 101

APRIL 29" 2016

Youri Poulin, Renato Borges, Florian Fauchier,
Yannick Roehlly, Alain Schmitt, Christian Surace

PY THON

IMPORT

= Populates main namespace (Please, don't):

from os import *
path.join("/folder/", "file")

from os.path import *
join("/folder/", "file")

from os.path import join
join("/folder/", "file")

from os import path
path.join("/folder/", "file")

e Dedicated namespace:

import os
os.path.join("/folder/", "file")

import os.path
os.path.join("/folder/", "file")

IMPORT

= Dedicated customized namespace (recommended):

import os.path as osp
osp.join("/folder/", "file")

from os import path as p

p.join("/folder/", "file")

import numpy as np
np.array([1l, 2, 3])

1Y

MAIN TYPE

e Numerical:
mnt:42
m float: 42.
e |terables::
m str: "The answer is 42" tuple : ("The answer",
s, 42)
m |ist: ["The answer", "is", 42, ["a list"]]
m dic: {"The Question" : "the ultimate one",
"The answer:" : 42}
e |ogical:
m bool: True

LISTS

e Create a list:

>>> x = [4, 12, 3.2, 45,

>>> print(x)
[4, 12, 3.2, 45, 11]

e |ndex positions:

Index from rear: -6 -5 -4 -3 -2 -1
Index from front: @ 1 2 3 4 b5
+---F---F---F- -4+
|lalblc|d]|]e]|T]|
i e it s tats Sl 2
Slice from front: : 1 2 3 4 5
Slice from rear: : -5 -4 -3 -2 -1

LISTS

>>> print(x)

[4, 12, 3.2, 45, 11]

e Access with index:

>>> x[0]
4

>>> x[1:]

[12, 3.2, 45, 11]
>>> x[1:3]

[12, 3.2]

>>> x[-2:]

[45, 11]

TUPLES

e Create a tuple:

(4, 12, 3.2, 45, 11)
x =4, 12, 3.2, 45, 11 # equivalent

print(x)
12, 3.2, 45, 11)

e Assign a tuple to multiples variables:

a, b, ¢c = (4, 12, "something")

print("a = {}; b = {}; ¢ = {}".format(a, b, c))
4; b = 12; ¢ = something

NUM

¥

NUMPY ARRAYS

e Array from list (or tuple):

>>> arl = np.array([1l.23, 4.67, 5.8, 7.2])
>>> print(arl)

[1.23 4.67 5.8 7.2]

e Operation on arrays:

>>> ar2 = np.array([1l, 2, 0, 10])
>>> arl*ar2
array([1.23, 9.34, 0. , 72. 1)

>>> arl=*10
array([12.3, 46.7, 58. , 72. 1)

NUMPY

e Arrays comparison:

>>> arl < ar2

array([False, False, False, True], dtype=bool)

e \Where function:

>>> np.where(arl>ar2)
(array ([0, 1, 21),)

e Cast an array:.

>>> ar?2
array([1, 2, 0, 101])

>>> ar2.astype(float)
array([1., 2o 0., 10.1)

NUMPY

e A\ Slicing a numpy arrays returns a view.
= Modifying this view will modify the original array! :

>>> print(arl)
[1.23 4.67
>>> v = arl[l:]

>>> yv[0] = 999
>>> print(arl)
[1.23 999.

TYPING

e Dynamic typing:

>>> x = 145.
>>> type(x)
<class 'float'>
>>> 1 = 2

>>> type(1i)
<class 'int'>

>>> g = "23.2"
>>> type(s)
<class 'str'>
>>> g = float(s)
>>> print(s)
23.2

>>> type(s)
<class 'float'>

SYNTAX

e No {, no;
e |nstructions are separated by end of lines
e Structures are delimited by indentation

STRUCTURE

-OR LOOP

e |teration on an iterable:

myList = [2, 5, 3, 7]
for element in myList:
print (element)

myList = [2, 5, 3, 7]
for i in range(len(myList)):
print(myList[i])

Output:

>>> myBoolean = 1==1
>>> print(myBoolean)
True

>>> not myBoolean
False

>>> myBoolean = 1!=1
>>> print(myBoolean)
False

if myBoolean:
print ("Something")

if (a == b) and ((
print("Something")

TEST

e Booleans

WHILE

k =0
while k <= 3:

print (k)
k+=1

Output:

-UNCTIONS

e Define a function:

>>> def f(x, a = 0.2):

res = x**2 + 4.5*x + a
.o return res
>>> y = f£(3)

>>> print(y)

22.7

>>> y2 = (3, a = 0.4)
>>> print(y2)

22.9

myRoutine():

t = 12
global u
u = u*100
t =1
u = 2
myRoutine ()

>>> print(t)
1

>>> print(u)
200

-UNCTIONS

e Routines are functions:

-ORMAT STRINGS

s = "The {} is {}.".format("answer", 42)
print(s)
answer is

0, 1))

= 11.1, 2.2, 3.3]
"First : {0[0]}, second : {0[1]}, third : {0[2]}".format(t)
'First : 1.1, second : 2.2, third : 3.3'

READ A FIL

Basic way:

fname = open('example.txt', 'r')
< operations on fname >

fname.close()

More secured way:

with open("example.txt", "r") as fname:
out = fname.read() # string containing the entire fname

line fname.readline() # One line, goes to the next line
at each use
out fname.readlines() # list (one line for one line in the

READ A FILE

Numerical data files

>>> ar = np.loadtxt('example.dat', dtype=<type 'float'>,
comments='#"', delimiter=None)
>>> print(ar)
array([[1.034 2.2 23.34]
[33.2 44.1 43.88]
13.5 673. 14.42]
33.0 67. .88]
83.2 45. 1
55.9]

3. .72

WRITE AFILE

e (Classical secured way:

with open("exampel.txt", 'w') as fname:

fname.write("This is the file content\nbye")

e Numerical data files:

arr = np.array([[1l.1, 2.2, 3.3], [2.1, 2.2, 2.3]])

np.savetxt("output.dat", arr, fmt='%.18e', delimiter=' ', newline='\n',

WRITE YOUR
PROGRAM/MODUL

#!/usr/bin/env python3

import numpy as np
Functions

def datafile function(input fname, output fname, verbose = False):
input arr = np.loadtxt(input fname)
if verbose:
print ("Input array has been loaded.")
output arr = operation on array(input arr)
np.savetxt (output fname, output arr)
if verbose:
print("Output array has been written.")

operation on array(input array):
return input array*10 + 2

SUBPROCESS AND
MODULES

e Get stdin and stoud from system command:

import subprocess as sub

(output, error)=sub.Popen('ls", stdout=sub.PIPE,
shell=True).communicate()

e Systemm commands and path manipulation:

import os

>>>0s.getcwd ()

' /home/username
>>>0s.path.abspath("folder")
' /home/username/folder"

>>>path = os.path.join("/home/username", "folder2")
>>>path

' /home/username/folder2’

>>>0s.chdir (PATH)

>>>0s.getcwd ()

' /home/username/folder2'

DOCUMENTATION

https://docs.python.org/3/ text
https://docs.python.org/3/ text

https://docs.python.org/3/
http://docs.scipy.org/doc/

INSTALLING
PYTHON

AlM

Have Python installed on your computer and
understand how this installation works, how to install
new packages, how to make updates, etc.

OUTLINE

e |nstall Python with Anaconda

e The conda utility

e The pip utility

e Quick overview of environments
e The interactive Python

e The notebook

INSTALLING PYTHON WITH

ANACONDA

ANACONDA

Anaconda is a Python distribution by Continuum

analytics.

Works on GNU/Linux, OSX™®©, and Windows ™®.
Contains a lot of scientific packages (in particular

astropy).
Installs Python in a user owned directory
without interfering with the system Python.

https://www.continuum.io/downloads

&

https://www.continuum.io/downloads

INSTALLATION

Download the Anaconda installer (take the Python 3
version) and execute it. In doubt, use default choices.

https://www.continuum.io/downloads

https://www.continuum.io/downloads

il = 00 o1 3% v

4 yannick

|

The installer has created an anaconda directory
in your home folder...

Q. Rechercher

Favoris
@ AirDrop
[E Tous mes fichiers
73 Applications
=] Bureau
@ Documents
0 Téléchargements
= ownCloud

Appareils
Partagé(s)
Tags

@ Rouge

@ Orange
Jaune
Vert
Bleu
Violet

Gris

) Tous les tags...

e

Bureau

ownCloud

anaconda

™

Documents

Public

Images

Téléchargements

p

Musique

I

Vidéos

... containing all the distribution, in particular a bin folder.

| NN [anaconda
< = 0 o1 2Z:=v v Q. Rechercher
Favoris
@) AirDrop
[E) Tous mes fichiers
o/ Applications bin conda-meta envs Examples
] Bureau

@ Documents

0 Téléchargements

5 ownCloud imports include lib mkspecs
Appareils
Partagé(s)

Tags
@ Rouge
@ Orange

phrasebooks pkgs plugins

Jaune

Vert
. XML

Bleu
) python q3porting.xml share ssl
Violet

Gris

Tous les tags...

e The installer has also modified the profile file to add
this bin directory in the PATH, before your system

default path.

added by Anaconda3 4.0.0 installer

export PATH="/Users/yannick/anaconda/bin:S$PATH"

e Doing this, calling python will use the Python installed

by anaconda and not the system one.
e Uninstalling anaconda is just a mater of removing the
anaconda directory (and removing the PATH export

from the profile).

A navigator application is also available to
launch some application...

J ANACONDA NAVIGATOR Sign in to Anaconda Cloud

a

My Applications

Home

A
L & o =
'A: A
Environments o —
notebook qtconsole spyder
Web-based, interactive computing PyQt GUI that supports inline figures, Scientific PYthon Development
notebook environment. Edit and run proper multiline editing with syntax EnviRonment. Powerful Python IDE
human-readable docs while highlighting, graphical calltips, and with advanced editing, interactive
describing the data analysis. more. testing, debug?ing and introspection
eatures
Learning
4.1.0 4.2.0 238
: o o
Community
glueviz orange-app
Multidimensional data visualization Component based data mining =
across files. Explore relationships framework. Data visualization and
within and among related datasets. data analysis for novice and expert.
Interactive worklfLows with a large
toolbox.

| < |

... or to install Python packages. But we will see how to
do this with the conda programme.

[JOX)) Anaconda Navigator

{.) ANACONDA NAVIGATOR Sign in to Anaconda Cloud

Search Environments Q| | Installed v” Channels “ Update package index... ‘ |Search Packages QI
Home
‘ | Name 4 | T ‘ Description | Version | I"
root >| - . -
) Configurable, python 2+3 compatible sphinx 077
theme

O ¥| alabaster 7.
+| anaconda 1 4.0.0
= J

Environments

._fl anaconda-client _) Anaconda.org command line client library 1.4.0

!| appnope) Disable app nap on os x 10.9 0.1.0

._fl appscript _) Control applescriptable applications from python 1.0.1

Learning !l argcomplete) Sgis:téab completion of arguments for python 1.00

'_'I astropy) g;mrﬁg;gy-developed python library for 112
Utilities to internationalize and localize python

1] babel -> applications B2

: ._fl beautifulsoup4 _) Python library designed for screen-scraping 441
Community

¥ bitarray ¢) E)f(ftlg:?sri\(l) rr]epresentatlon of arrays of booleans -- ¢ 0.8.1

!l blaze _) Numpy and pandas interface to big data 0.9.1
Python interactive visualization library for modern

¥ bokeh -> wgb browsers o Qi

._fl boto _) Amazon web services library 2.39.0

zl bottleneck) Fast numpy array functions written in cython. 1.0.0 v

Create “ Clone “ Remove 170 packages available (root)

THE CONDAUTILITY

conda is a Python* package manager.

Search for packages
conda search PACKAGE

Install a package
conda install PACKAGE

Uninstalling a package
conda remove PACKAGE

List installed package
conda list

* Not only for Python packages in fact...

UPDATE

Updating the conda programme (to do once in a while)
conda update conda

Updating the anaconda distribution

conda update anaconda

Updating a specific package
$ conda update PACKAGE

Note that anaconda is also a package depending on all the standard packages of the
distribution, that's why when you “update anaconda” you update the distribution. When you
update a specific package, you switch the Anaconda installation to a custom version.
Subsequently updating the distribution may then downgrade the package.

Keep it simple and only update the distribution.

THE PIPUTILITY

pip is the standard tool to install packages from PyPI, the
Python Package Index (pypi.python.org).

Search PyPI for packages
$ pip search SOMETHING

Install a package from PyPI

S pip install PACKAGE

Updating a package
$ pip install PACKAGE --upgrade

Use pip to install packages that are not available with conda.

Always prefer conda to install a package.

https://pypi.python.org/

“NVIRONMENTS

Anaconda creates a root environment. Separate environments may be created to
install a specific set of packages, even with a different Python version.

Creating a new environment to use Python 2.7
$ conda create -n my py2 python=2.7

Switching to this environment (look at the new prompt)

$ source activate my py2

discarding /Users/yannick/anaconda/bin from PATH
prepending /Users/yannick/anaconda/envs/my py2/bin to PATH

(my_py2)$ _

From here, all available package, all installations
are made in the new environment.

To return to the root environment
(my py2)$ source deactivate
discarding /Users/yannick/anaconda/envs/my py2/bin from PATH

When you launch a console, you are always in the root environment and have to
manually activate the specific environment.

INTERACTIVE PYTHON

If you launch python in the console, you can write Python code that is
evaluated line per line (it is a REPL - read, eval, print, loop). But it's not

very user friendly.

IPython was developed to have an interactive Python shell with:

e Code completion (with Tab).
e Access to useful shell commands like cd or Is.

e Good command history.
e Alot more.

Code is organised in cells (which can by multi-line).

In [1]: import num
numba numbergen numbers numexpr numpy

In [1]: import numpy as np
np.sum(np.arange(160))
]: print(x)

In [4]: print(x*x2)
24502500

In [5]: |

IPython is very handy to perform operations that don't need to be
stored in a script.

IPYTHON NOTEBOOK

The notebook was developed to give to IPython an interface similar to
Mathematica notebook.

IPython is accessed via a web page where one can:

e Write and evaluate Python code.

e Display the results of the code, in particular matplotlib
graphics.

e Write some textual content, like a lab notebook.

For instance, the LIGO experiment made a tutorial on the
processing of their data:

https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.ntml

https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html

IPYTHON / JUPYTER

IPython has evolved and can now run code in other languages (e.g.
GNU-R). Hence, it was renamed to Jupyter.

‘p t;r
Jupy
N’

NOTEBOOK - LAUNCHING [T

IPython notebook saves the notebooks on disk. We will create a folder
where the notebook will be saved on launch the notebook inside.

$ mkdir tutorial notebooks

$ cd tutorial notebooks
$ jupyter notebook

This will spawn a browser showing:

— Jupyter

Files Running Clusters

Select items to perform actions on them. Upload New~ &

BE.

Notebook list empty.

We can create a new notebook doing New — Notebook Python 3. A
new browser tab is opened with:

~ JU pyter Untitled Last Checkpoint: a minute ago (unsaved changes) Lo
File Edit View Insert Cell Kernel Help ‘Python 30
+ XA B 2 v M B C Code - CellToolbar

In []:

We can rename the notebook with a click on Untitled. If we go back to
the main tab we can see that the notebook was renamed and that the
file in the directory is the notebook name followed by .ipnb.

= Jupyter

Files Running Clusters
Select items to perform actions on them. Upload New~ &
an .

& Tutorial notebook.ipynb

The notebook is organised into cells (like the IPython console). Each cell
can contain Python code (with code completion with tab)

~ JU pyter Untitled Last Checkpoint: 3 minutes ago (unsaved changes) Lo
File Edit View Insert Cell Kernel Help & ‘Python 30
+ @0 v M B C Code - CellToolbar

In []: import num

numbers §

numpy

or text formatted with Markdown.

Y— J u pyter Tutorial notebook Last Checkpoint 16 minutes ago (unsaved changes) a
File Edit View Insert Cell Kernel Help 4 ‘Python 30

+ 5 B A % W EC Makdown CellToolbar

This is a text cell.

® two

This is a text cell.
- one
- two\

It's easy to display Python help. You just have to execute a cell with the
object you want help on followed by a quotation mark (attached).

JU pyter Untitled Last Checkpoint: 5 minutes ago (unsaved changes) e
File Edit View |Insert Cell Kernel Help # |Python3 O
+ @B 2 v N B C Code 4 CellToolbar

In [1]: dimport numpy as np
In [2]: np.arange?

In []:

&
x

Docstring:
arange([start,] stop[, step,], dtype=None)

Return evenly spaced values within a given interval.

Values are generated within the half-open interval " [start, stop)
(in other words, the interval including “start’ but excluding “stop’).
For integer arguments the function is equivalent to the Python built-in
“range <http://docs.python.org/lib/built-in-funcs.html>"_ function,

but returns an ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not
be consistent. It is better to use ““linspace " for these cases.

Parameters

start : number, optional
Start of interval. The interval includes this value. The default
start value is 0.

stop : number

IN-LINE GRAPHICS

You can plot matplotlib figures inside the web page using
%matplotlib inline at the beginning of the notebook.

In [1]: %matplotlib inline
import numpy as np
from matplotlib import pyplot as plt

In [2]: x= np.linspace(-np.pi, np.pi)
plt.plot(x, np.sin(x))
Qutl2]: [<matplotlib.lines.Line2D at Ox7f64eb812b38>]

10

05

0.0

-0.5

-1.0

Alternatively, you can use %matplotlib notebook to have interactive
figures (zoom, pan, etc.)

NO TEBOOK CODE EXECUTION

Each code cell must be executed (Alt+Return or the play
button).

There is kernel managing a session. Each executed cell
modify the kernel environment.

It's not the order of the cells in the page that define the
programme but the order in which the cells are
executed.

There is a shortcut Cell = Run all cells.

The kernel may be restarted.

TUTORIAL &
EXERCISES

